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Summary 

Currently used techniques for tire contact analy- 
sis are reviewed. Discussion focuses on the different 
techniques used in modeling frictional forces and the 
treatment of contact conditions. A status report is 
presented on a new computational strategy for the 
modeling and analysis of tires including solution of 
the contact problem. The strategy is based on solv- 
ing the complex tire contact problem as a sequence 
of simpler problems and obtaining information about 
the sensitivity of the tire response to each of the com- 
plicating factors. 

The key elements of the proposed strategy are 
(1) use of semianalytic finite elements in which the 
shell variables are represented by Fourier series in the 
circumferential direction and piecewise polynomials 
in the meridional direction, ( 2 )  use of perturbed La- 
grangian formulation for the determination of the 
contact area and pressure, (3) application of multi- 
level operator splitting to effect successive simplifica- 
tions of the governing equations, and (4) application 
of multilevel iterative procedures and reduction tech- 
niques to generate the response of the tire. 

The tire variables include strain components, 
stress resultants, and generalized displacements, with 
the strain components and stress resultants allowed 
to be discontinuous at interelement boundaries. The 
perturbed Lagrangian formulation results in a bet- 
ter conditioning of the equations to be solved and in 
reducing the number of iterations required in the so- 
lution process. Multilevel operator splitting is used 
to uncouple the equations associated with different 
harmonics, to identify the effects of different Fourier 
harmonics, to delineate the effect of nonorthotropic 
material properties on the response, and to iden- 
tify regions in which more sophisticated mathemat- 
ical and/or computational models are needed. Re- 
duction techniques allow substantial reduction in the 
total number of degrees of freedom used in gener- 
ating the response of the tire. Multilevel iterative 
procedures include nested applications of the pre- 
conditioned conjugate gradient (PCG) technique. 
The PCG technique provides a stable and rapidly 
convergent iterative procedure. Numerical results 
are presented to demonstrate the effectiveness of a 
proposed procedure for generating the tire responses 
associated with different Fourier harmonics. 

Symbols 

EL~ET elastic moduli in 
direction of fibers and 
normal to it 

h 

[K](n) 

vector of strain param- 
eters associated with 
the nth Fourier har- 
monic for the tire (see 
eqs. (10) and table 1) 

vectors defined in 
eqs. (8) 

shear moduli in the 
plane of fibers and 
normal to it 

vector of nonlinear 
terms associated 
with the nth Fourier 
harmonic (see eqs. (8)) 

vector of stress- 
resultant parame- 
ters, associated with 
the nth Fourier har- 
monic, for the tire (see 
eqs. (10) and table 1) 

total thickness of the 
tire 

linear matrix asso- 
ciated with the nth 
Fourier harmonic (see 
eqs. (8)) 

matrices defined in 
equations (9) 

submatrices of [K](n) 
(see eqs. (11)) 

matrices containing 
nonlinear terms (see 
eqs. (12) and (14)) 

matrices associated 
with the reduced equa- 
tions (see eqs. (18), 

bending and twisting 
stress resultants (see 

number of Fourier 
harmonics which are 
greater than or equal 
to one 

(19), and (20)) 

fig. 2 )  

extensional stress 
resultants (see fig. 2 )  



I n 

I Po 

~ P n  

1 Qs, Qe 

S 

shape functions used in 
approximating the gen- 
eralized displacements 
and external loading 

u, 0, w 

shape functions used 
in approximating the 
stress resultants and 
strain components 

Fourier harmonic 
(circumferential wave 
number) 

Fourier harmonic at 
which global approx- 
imation vectors are 
generated 
intensity of localized 23 

normal loading on the 
tire (see figs. 2 and 4) 

normal pressure 
components associated 
with the nth Fourier 
harmonic P 
intensity of external 

dinate directions (see 

{Z In  

loading in the coor- PI 
fig. 2) 

right-side vectors in 
equations (16) 

consistent load vec- 
tor, associated with 
the nth Fourier har- 2&S3,2~e3 
monic, for the tire (see 
eqs. (8)) e 

E 

ES , &e, 2Ese 

transverse shear stress 
resultants (see fig. 2) 

KS , “e 2Kse load vectors associated 
with the reduced equa- 
tions (see eqs. (18), { A h  
W), and (22)) 

submatrices of [K](n) 
(see eqs. (11)) 

submatrices of [K](n) 
(see eqs. (11)) 

meridional coordinate 
of tire (see fig. 2) 

x 

displacement compo- 
nents of the middle 
surface of the tire in 
the meridional, circum- 
ferential, and normal 
directions, respectively 
(see fig. 2) 

total strain energy of 
the shell associated 
with the nth load 
harmonic pn 

vector of generalized 
nodal displacement 
coefficients for the 
tire (see eqs. (10) and 
table 1) 

coordinate normal to 
the tire middle surface 
(see fig. 2) 

vector of unknowns 
associated with the 
nth Fourier harmonic 

contact angle in 
meridional direction 

matrix of global 
approximation vectors 
(see eqs. (17)) 

penalty parameter 

extensional strains of 
the middle surface of 
the tire 

transverse shear strains 
of the tire 

circumferential (hoop) 
coordinate of the tire 
(see fig. 2) 

bending strains of the 
tire 

vector of Lagrange 
mu1 t iplier parameters 
associated with the 
nth Fourier harmonic 
(see eqs. (10)) 

tracing parameter 
identifying the cou- 
pling between the dif- 
ferent Fourier harmon- 
ics (see eqs. (15)) 
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I 
L 

VLT 

t 

Superscripts: 

a 

major Poisson's ratio 
of the individual layers 

dimensionless coordi- 
nate along the merid- 
ian (see fig. 3) 

rotation components of 
the middle surface of 
the tire (see fig. 2) 
vector of amplitudes of 
global approximation 
vectors (see eqs. (17)) 

index of shape func- 
tions for approximat- 
ing generalized dis- 
placements and exter- 
nal loadings; ranges 
from 1 to the number 
of displacement nodes 

index of shape func- 
tions for approximat- 
ing stress resultants 
and strain components, 
ranges from 1 to the 
number of parameters 
to approximate each 
stress resultant and 
strain component 

t matrix transposition 

- coefficient of sine terms 
in Fourier series 

Subscript: 

max maximum value 

1. Introduction 
Contact problems have occupied a position of spe- 

cial importance in tire mechanics because the contact 
area is where the forces are generated to support, 
guide, and maneuver the vehicle. The distributions 
of contact pressures and frictional forces define the 
moments and shears that are applied to the vehicle 
suspension system (ref. 1). Under rolling conditions, 
the distribution of sliding velocities within the tire 
footprint combined with the frictional force distribu- 
tion defines the rate of energy dissipation for the tire 
and provides a measure of tire wear (refs. 2 and 3).  

Modeling of the contact phenomena in the tire 
footprint is a formidable task due, in part, to the 

difficulty of modeling the tire response. Both the 
distribution of tractions and the footprint geometry 
are functions of the tire normal, frictional, and in- 
flation loads. Moreover, the complex mechanisms 
of dynamic friction, which allow the tire to develop 
the necessary steering and braking forces for vehi- 
cle control, are not fully understood (ref. 4). The 
tire analyst thus is forced to choose among sev- 
eral friction theories. When the tire contact prob- 
lem includes frictional effects, the solution becomes 
path dependent and uniqueness of the solution is not 
guaranteed. 

The tire is a composite structure composed of rub- 
ber and textile constituents which exhibit anisotropic 
and nonhomogeneous material properties. Normal 
tire operating conditions create loads that can pro- 
duce large structural rotations and deformations. El- 
evated operating temperatures, caused by combined 
effects of hysteresis and frictional heating, can cause 
variations in the material characteristics of the tire 
constituents (refs. 5-7). The laminated carcasses of 
aircraft tires are thick enough to allow significant 
transverse shear deformations. 

The aforementioned facts and the attending diffi- 
culties can make the cost of tire analysis prohibitive. 
Hence, there is a need to develop modeling strate- 
gies and analysis methodologies, including contact 
algorithms, to reduce this expense. In recent years 
nonlinear analyses of static and dynamic problems 
involving contact have been the focus of intense re- 
search efforts. Novel techniques which have emerged 
from these efforts include semianalytic finite element 
models for the nonlinear analysis of shells of revolu- 
tion (refs. 8 and 9), reduction methods (refs. 10 and 
11), and operator splitting techniques (refs. 12-14). 

Current research on tire modeling and analysis 
at NASA Langley Research Center is aimed at de- 
veloping an accurate and cost-effective strategy for 
predicting the tire response. This is being accom- 
plished by combining the aforementioned techniques 
with more recent developments in analysis methods, 
in particular the perturbed Lagrangian formulation 
(refs. 15 and 16) and iterative procedures based on 
the preconditioned conjugate gradient (PCG) tech- 
nique (refs. 17-19), for the determination of the con- 
tact area and pressure distribution. 

The objectives of this paper are (1) to review 
currently used techniques for tire contact analysis 
with particular emphasis on the modeling of fric- 
tional forces, (2) to present the status of an effective 
computational strategy for tire analysis including the 
solution of tire contact problems, and (3) to describe 
some experimental programs that are currently be- 
ing used to develop a data base for verification of the 
analysis results. 
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2. Key Elements of Contact-Friction 
Problems 

Contact-friction problems are inherently nonlin- 
ear and path dependent. The nonlinearity is due in 
part to the fact that both the contact area and the 
contact pressures are not known a priori and they 
vary during the load history. The path dependence 
is a result of the nonconservative (irreversible dissi- 
pative) character of the frictional forces. 

The four key elements of contact-friction prob- 
lems are (1) finite element formulation and model 
used, (2) modeling of frictional forces, (3) treatment 
of contact conditions and the numerical procedure 
used for updating these conditions, and (4) compu- 
tational algorithm used which includes the iteration 
procedure, convergence criteria, and traction recov- 
ery. The discussion in this section focuses on both 
the frictional modeling and the contact conditions. 
In section 3 different methods for solution of contact 
problems are briefly reviewed. 

2.1. Friction Models for Tires 

Most of the existing literature on contact-friction 
problems deals with metal-to-metal contact (ref. 4) .  
The major phenomenon associated with this class 
of problems is the plastic deformation of asperities 
within the contact zone. The frictional characteris- 
tics of the metal surfaces are generally assumed to 
be a function of surface roughness, the presence of 
surface films, and contact pressures, which are high 
enough to generate plastic flow of the asperities in 
the contact interface. 

Problems associated with pneumatic tires form an 
important subset of contact-friction problems. For 
this set of problems the pressure in the contact region 
is a function of the tire inflation pressure (ref. 2). The 
presence of inflation pressure results in lower contact 
pressures in tires than those associated with metal- 
to-metal contact. For most combinations of tire and 
road surfaces, the frictional characteristics of the tire- 
pavement interface are influenced by the speed of the 
vehicle, surface roughness, and the presence of con- 
taminants such as water, ice, or snow on the sur- 
face. However, in this section, only the static and 
low-speed test conditions on a dry surface are con- 
sidered. Under these conditions the frictional charac- 
teristics of the tire-pavement interface are insensitive 
to variations in surface roughness and, therefore. are 
a function of the tire inflation pressure only (ref. 3) .  

A number of models have been developed in an 
effort to explain the phenomena associated with fric- 
tion. These include (1) classical friction models and 
their various extensions, (2) adhesion-plowing mod- 
els, and (3) nonlocal friction models. 

2.1.1. Classical models. The first group of mod- 
els, classical friction models, was first presented by 
Amontons in 1699 and extended by Coulomb in 1781. 
These models were developed to describe the gross 
motions of effectively rigid bodies in contact. The 
frictional force at the onset of, and during, sliding 
is proportional to the normal contact force. This is 
described by the familiar relation: 

ITUI = PTn 

where Tu and Tn are the frictional and the normal 
forces, respectively, and p is the coefficient of friction. 
The following assumptions are generally made with 
regard to the coefficient of friction and the direction 
of the frictional force: 
1. The coefficient of friction is independent of both 

the apparent area of contact and the sliding 
velocity. 

2. The frictional force acts in the slide direction of 
the relative tangential velocity but in opposite 
sense. 
Experiments have shown that the first assump- 

tion generally is not valid. In fact, the static coeffi- 
cient of friction at the onset of sliding ps is greater 
than the dynamic coefficient during sliding Pa. How- 
ever. for limited velocity ranges, the variation of 1-1 
with velocity can be neglected. The second assump- 
tion regarding the direction of the frictional force is 
a reasonable approximation for surfaces without pro- 
nounced directional properties. However, the fric- 
tional force may change direction continuously as 
sliding proceeds. 

2.1.2. Adhesion-plowing models. Tabor (ref. 20) 
has proposed the adhesion-plowing theory of friction. 
This theory suggests that the coefficient of friction is 
the sum of two components: 

P = Pa + P p  ( 2 )  

where Pa is the adhesion friction component and p p  is 
the plowing friction component. In its simplest form 
the adhesion component of friction is as follows: 

( 3 )  

where r is the shear strength of the softer contacting 
material and H is the hardness of the softer contact- 
ing material. 

The adhesion component of friction is compati- 
ble with the classical laws of friction and leads to 
frictional forces that are proportional to the normal 
load and independent of the area of contact. The 
plowing component of friction can be modeled as a 
hard conical asperity grooving a softer surface. For 

1 
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most engineering applications, however, the plowing 
component of friction is assumed to be negligible. 

Both classical friction laws and adhesion-plowing 
theory lead to solution algorithms which do not guar- 
antee unique solutions for contact-friction problems, 
friction being a dissipative process and, therefore, 
leading to path-dependent solutions. 

2.1.3. Nonlocal friction models. The third type 
of friction models, the nonlocal models (such as the 
one proposed by Oden and Pires, ref. 21), account 
for the microscopic aspects of the physics of friction. 
Despite their elegance, the characterization of these 
models for practical situations is still a problem. 
Moreover, uniqueness of solution is guaranteed only 
for a sufficiently small friction coefficient. 

Examination of the various friction models cur- 
rently in use suggests that the classical friction mod- 
els are adequate for use in tire contact problems. 
However, these models need to be modified slightly to 
incorporate the influence of inflation pressure on the 
friction characteristics of the tire-pavement interface. 

2.2. Analogy Between Frictional Behavior and 
Elastoplastic Response 

Although specific details may differ significantly, 
an analogy exists between frictional behavior and 
elastoplastic response of solids. The following ele- 
ments of frictional behavior (on left) correspond to 
the indicated elements of elastoplastic behavior of 
solids (on right): 

Dry friction - Elastic-rigid plastic 
response 

Frictional sliding - Nonassociated plasticity 
(e.g., for granular 
materials) 

Slip surface - Yield surface 

Static coefficient - Strain hardening 
of friction during 
slip 

Directional - Anisotropic plasticity 
dependence 
(anisotropic) 

\friction behavior 

This analogy is useful in applying the efficient numer- 
ical algorithms developed for the elastoplastic prob- 
lems to contact-friction problems. 

2.3. Contact Conditions 
On the contact surface, the following conditions 

must be satisfied: 
1. NO gap or penetration of material point; occurs 

at the place of contact. 
2. Normal tractions at contact points are 

compressive. 
3. Relative sliding occurs when the tangential trac- 

tion reaches the value of the normal traction times 
the coefficient of friction. 

4. During sliding, the tangential traction component 
is related to the tangential displacement compo- 
nent and counteracts the relative movement of the 
bodies in contact. 

The first three conditions are expressed in terms 
of inequalities. The last two conditions represent 
Coulomb’s law of friction. 

3. Different Methods for Solution of 
Contact Problems 

The different techniques for solution of contact 
problems can be divided into three groups: (1) math- 
ematical methods, (2) semiempirical methods, and 
(3) numerical methods. 

3.1. Mathematical Models 
Early work on contact problems was concerned 

with indentation of rigid frictionless bodies into an 
elastic medium. Most of this work was done in the 
Soviet Union (Shtaerman, Galin, and Muskhelishvili) 
and was based on using mathematical methods such 
as complex potentials, conformal maps, and integral 
equation methods (refs. 22-25). More recent work is 
based on the use of variational inequalities (refs. 26 
and 27). 

3.2. Semiempirical Models 
The second group of methods consists of semi- 

empirical approaches, iterative and simple methods 
based on physical considerations (refs. 28-34). An 
example of these methods is the gap element ap- 
proach based on the use of interface elements between 
the contacting bodies. The stiffnesses of the interface 
elements are adjusted to allow the relative motion of 
the two bodies, while preventing penetration of one 
body into the other. These approaches were found to 
be sensitive to the selection of the stiffnesses of the 
interface elements. Improper choice of the stiffnesses 
can lead to slow convergence, oscillatory behavior, 
and occasionally divergence. Therefore, they are not 
recommended for use in tire contact problems. 

3.3. Mathematical Programming Approaches 
The third group of methods is based on math- 

ematical programming approaches in conjunction 
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with the finite element method. The two most com- 
monly used methods in this category are the La- 
grange multiplier and penalty methods (refs. 19, 35, 
and 36). In the Lagrange multiplier approach, the 
contact region is first estimated and the contact con- 
ditions, which are treated as equality constraints, 
are satisfied by transforming the constrained prob- 
lem into an unconstrained one with the introduction 
of additional variables (Lagrange multipliers). 

Penalty methods, on the other hand, allow the 
transformation of a constrained problem into an un- 
constrained one without introducing additional vari- 
ables. This is accomplished by satisfying the contact 
conditions only approximately for finite values of the 
penalty parameter. For frictionless contact, applica- 
tion of the penalty method is equivalent to placing 
interface springs between all penetrating points and 
the contact surface. 

The Lagrange multiplier and penalty approaches 
are both computationally expensive (requiring large 
numbers of elements, degrees of freedom, and itera- 
tions) and are sensitive to the manner of updating 
contact conditions at a contact node. Moreover, the 
Lagrange multiplier method results in an increase in 
the number of equations and the presence of zero 
terms on the main diagonal of the resulting algebraic 
equations. In the penalty method, the resulting alge- 
braic equations become ill-conditioned for large val- 
ues of the penalty parameter, and the approximate 

solutions are sensitive to the choice of the penalty 
parameter. 

Recently, perturbed Lagrangian approaches have 
been proposed to alleviate the drawbacks of the La- 
grange multiplier and penalty methods. The per- 
turbed Lagrangian formulation is obtained from the 
classical Lagrange multiplier formulation by adding 
a positive regularization term in the Lagrange mul- 
tiplier vector (refs. 15, 16, and 19). 

4. Key Elements of Proposed Strategy 
Figure 1 shows a schematic overview of a proposed 

computer-aided design (CAD) system for tire design. 
Such a system is not currently available but would be 
valuable for the tire designer. An important compo- 
nent of the CAD system is the modeling and analy- 
sis module, shown in figure 1. Artificial intelligence 
(AI) procedures are used in the selection and gen- 
eration of the mathematical and discrete models. A 
hierarchy of mathematical models ranging from two- 
dimensional first-order shear deformation shell the- 
ory to a full three-dimensional continuum theory is 
generated for modeling different regions of the tire. 
Also, a range of discrete models with different lev- 
els of sophistication are generated. These models 
are used for assessing the quality of the numerical 
predictions of the tire response and for adaptive im- 
provement of the solutions. The effectiveness of the 
CAD system depends, to a great extent, on the ef- 
fectiveness of the computational strategy used in the 
modeling and analysis module. 

5. Proposed Computational Strategy for Tire Contact Problem 
The overall goal of the present research is to develop an effective computational strategy for the solution 

of the tire contact problem which could serve as the modeling and analysis module shown in figure 1. The 
proposed strategy combines the following characteristics: 

1. It enhances the computational efficiency. 
2. It provides information about the sensitivity of the tire response to various modeling details. 
3. It provides error indicators which identify the regions where more sophisticated continuous mathematical 

and/or discrete models are needed. 
4. It synthesizes the response of the tire, using a complex mathematical (and/or discrete) model, from that of 

a simpler model (or a sequence of simpler models). 

The five key elements of the strategy are (1) semianalytic finite elements, (2) a mixed formulation 
with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized 
displacements, (3) a perturbed Lagrangian procedure for the determination of the contact area and pressure, 
(4) multilevel operator splitting to effect successive simplifications of the governing equations, and (5) reduction 
methods and multilevel iterative procedures (through nested applications of the PCG technique). 

In the semianalytic finite elements the tire variables and external loadings are represented by Fourier 
series in the circumferential coordinate and piecewise polynomials in the meridional coordinate. Mixed finite 
element models are used in which independent polynomial shape functions are used for each of the strain 
components, stress resultants, and generalized displacements, with the strain components and stress resultants 
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allowed to be discontinuous at interelement boundaries. The perturbed Lagrangian procedure is based on 
augmenting the classical Lagrangian functional by a quadratic (positive) term in the Lagrange multiplier 
vector for regularization. Operator splitting refers to the additive decomposition of the different arrays used 
in the governing finite element equations. Hierarchical application of operator splitting is used to 

1. Uncouple the equations associated with different Fourier harmonics and identify the effects of the different 

2. Delineate contributions to 

I 
harmonics 

a. Symmetric and antisymmetric components of the response with respect to 0 = 0 
b. Orthotropic and nonorthotropic (anisotropic) material properties 
c. Simple and more sophisticated models 

The aforementioned key elements of the computational strategy are described in the following subsections. 
The effectiveness of one of the key elements is demonstrated by means of numerical examples in section 6. 
While each of the key elements contributes to the effectiveness of the computational strategy, the synergism 
resulting from their combination is expected to have a dramatic effect on the efficiency of the solution process. 

5.1. Mathematical Formulation 

In the present study the tire is modeled using a moderate-rotation Sanders-Budiansky shell theory with 
the effects of transverse shear deformation and laminated anisotropic material response included (refs. 37 
and 38). A total Lagrangian formulation is used and the fundamental unknowns consist of the five generalized 
displacements, the eight stress resultants, and the corresponding eight strain components of the middle surface. 
The sign convention for the different tire stress resultants and generalized displacements is shown in figure 2. 
The concepts presented in the succeeding sections can be extended to higher order shear deformation theories, 
as well as to three-dimensional continuum theory 

5.1.1. Sputiul discretization of the tire. Each of the generalized displacements, the stress resultants, and 
the strain components is expanded in a Fourier series of the circumferential coordinate 0. The discretization 
in the meridional direction is performed by using a three-field mixed finite element model. The following 
expressions are used for approximating the external loading, generalized displacements, stress resultants, and 
strain components within each element: 

00 

= Ni 
n=O 

Pi,, 

P i  
-..) cos ne + { sin n.) (4) 

( 5 )  1 



and 

00 

= Ni‘ 
n=O 

cos n% + sin n6 

where N i  are the,Folynomial shape functions used in approximating the generalized displacements and external 
loadings, and N Z  are the shape functions for the stress resultants and strain components in the meridional 
direction; the generalized displacements with superscript i and subscript n represent the nodal displacement 
coefficients associated with the Fourier harmonic n; the stress resultants and strain components with superscript 
i’ and subscript n represent the parameters associated with the Fourier harmonic n. Note that the degree of 
the shape functions mi’ is lower than that of Na. Moreover, the continuity of the stress resultants and strain 
components is not imposed at the interelement boundaries and, therefore, the stress resultant and strain 
parameters can be eliminated on the element level. 

In equations (4) to (6) the range of the superscript i is the number of displacement nodes in the element; 
the range of the superscript i‘ is the number of parameters used in approximating each of the stress resultants 
and strain components; the shell variables without a bar are the coefficients of the cosine terms, and shell 
variables with a bar are the coefficients of the sine terms; and a repeated superscript denotes summation 
over its entire range. Henceforth, the vectors of the 10 generalized displacement parameters (eqs. (5)), of the 
16 stress-resultant parameters, and of the 16 strain parameters (eqs. (6)), associated with the harmonic n 
are denoted by {X},,  { H } n ,  and { E } n ,  respectively. These vectors can be decomposed into symmetric and 
antisymmetric sets (with respect to 6 = 0) as shown in table 1. 

5.1.2. Governing equations. The governing discrete equations of the tire are obtained by applying a modified 
form of the three-field Hu- Washizu mixed variational principle. The modification amounts to augmenting the 
functional of that principle by two terms: the Lagrange multiplier vector associated with the contact forces 
and a regularization term, which is quadratic in the Lagrange multiplier vector (refs. 15, 16, and 19). 

The vector of Lagrange multipliers {A} ,  which is used to enforce the contact conditions, is expanded in a 
Fourier series in the circumferential direction and piecewise polynomials in the meridional direction: 

n=O 

The Lagrange multiplier parameters { A } ,  are allowed to be discontinuous at interelement boundaries. If 
the number of terms (harmonics) retained in the Fourier series is N + 1, the governing equations can be written 
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in the following compact form: 

Z N  "+ 
where { Z } ,  (n  = 0,1, ..., N )  is the vector of unknowns associated with the nth harmonic, which includes 
strain parameters {E},, stress resultant parameters {If},, generalized displacements { X } , ,  and Lagrange 
multipliers {A},; [K](,) are linear matrices, {G}(n)  are vectors of nonlinear terms, and {P}'") are consistent 
load vectors. The following observations can be made about the governing equations (eqs. (8)): 

1. The first matrix on the left side of equations (8) is block diagonal. This is a direct consequence of the 
orthogonality of the trigonometric functions, which results in uncoupling the equations associated with 
the different Fourier harmonics for the linear case. For the nonlinear case, the vectors {G}(n)  couple the 
unknowns associated with all the harmonics. The different types of coupling that occur in the analysis of 
tires using semianalytic finite elements are listed in table 2. 

2. The contributions of the different Fourier harmonics and the anisotropic (nonorthotropic) material coeffi- 
cients to the governing equations can be identified as follows: 

a. Fourier harmonics-The block-diagonal matrices [K](,) (n > 1) in equations (8) are linear in the Fourier 
harmonic n. Therefore, [K] (n )  can be expressed as the sum of two matrices as follows: 

[K](")  = [I?] + n [ k ]  (9) 

where both [k] and [k] are independent of n. The nonlinear vectors {G}(,) are quadratic in n. 
b. Anisotropy (Nonorthotropy)-A unique feature of the mixed formulation used herein is that the 

anisotropic (nonorthotropic) material coefficients are included only in the linear matrices [K] (n ) .  For the 
linear case, these anisotropic coefficients result in the coupling between the symmetric and antisymmetric 
shell parameters (see table 1). 

3. If the vectors { Z } ,  are partitioned into subvectors of parameters of strains, stress resultants, generalized 
displacements, and Lagrange multipliers, that is, 

then the matrix [K](,) can be written in the following form: 

Ko+Ka -R 
-Rt SA+nS . 

S: + nSt Q 
Qt RIE  

where the submatrices [KO]  and [Ka] contain the contributions of the orthotropic and anisotropic 
(nonorthotropic) material coefficients, and E is a penalty parameter. The explicit forms of the matrices 
[KO],  [Ka] ,  [So],  [SI, and R] are given in references 14 and 39. 

4. The nonlinear vectors {G'}/,) contain bilinear terms in {If}, and {X} , ,  as well as quadratic terms in {X},.  
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5.2. Generation of the Nonlinear Response of the Tire 

For a given external loading, the governing nonlinear equations (eqs. (8)) are solved by using the Newton- 
Raphson iterative technique. The recursion formulas for the rth iterational cycle are 

l and 

where 

a = -[GI(') (I, J = 1 to N )  (14) 

For each Newton-Raphson iteration (represented by eqs. (12) and (13)),  two nested iteration loops are 
performed using the preconditioned conjugate gradient (PCG) technique as follows: 

1. The inner iteration loop accounts for the coupling between the different harmonics, that is, the submatrices 

2. The outer loop accounts for the contact conditions (the matrices [Q] and [R] associated with the contact 
[K] ( I J ) .  

nodes, eqs.(ll)). 
In the inner loop the following uncoupled equations are solved: 

where A is a tracing parameter which identifies the coupling between the different Fourier harmonics. Note 
that because of the special structure of the Jacobian matrix in equations (12), only the left side associated 
with the zeroth harmonic needs to be updated in each iteration. 

An efficient technique is described in the next subsection for solving equations (15). The major advantage 
of nested application of PCG is the reduction in the total number of iterations required for convergence. 

5.3. Efficient Generation of the Response Associated With Different Harmonics 

An efficient procedure is presented herein for generating the tire responses associated with different 
harmonics (solution of eqs. (15)). The basic idea of this procedure is to approximate the tire response associated 
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with the range of Fourier harmonics, 1 5 n 5 N ,  by a linear combination of a few global approximation 
vectors that are generated at a particular value of the Fourier harmonic within that range. The full equations 
of the finite element model are solved for only a single Fourier harmonic, and the responses corresponding 
to the other Fourier harmonics are generated using a reduced system of equations with considerably fewer 
degrees of freedom. The proposed procedure can be conveniently divided into two phases: (1) restructuring 
equations (15), for 1 5 n 5 N ,  to delineate the dependence on the Fourier harmonic n, and (2) generation of 
global approximation vectors (or modes) to approximate the response associated with a range of values of the 
Fourier harmonic and determination of the amplitudes of the modes. The procedure is described subsequently. 

5.3.1. Restructuring of the governing equations. If equations (9) and (11) are used, the governing equations 
for the harmonic n (1 5 n 5 N )  can be embedded in a single-parameter family of equations and written in the 
following compact form: 

The two vectors {P(n)}  and {i)(n)} are quadratic in n. 

5.3.2. Basis reduction and reduced system of equations. The basis reduction is achieved by approximating 
the vectors {AZ},, for a certain range of Fourier harmonics, 1 5 n 5 N ,  by a linear combination of a few 
global approximation vectors which are generated at a particular value of the Fourier harmonic within that 
range. The approximation is expressed by the following transformation: 

([kI+ . [ m A z > ,  = {P(n)> + X{i.(n)> (16) 

where [r] is a transformation matrix whose columns are the preselected approximation vectors, and {$}, 
is a vector of unknown parameters representing the amplitudes of the global approximation vectors for the 
harmonics n. The number of components of {$}, is much less than the number of components of {AZ},. 

A Bubnov-Galerkin technique is now used to replace the original equations (eqs. (16)) by the following 
reduced equations in {$},: 

([il + 4 k l )  {$}n = {d + X{G} (18) 

where 

5.3.3. Selection and generation of global approximation vectors. The global approximation vectors are 
selected to be the response associated with a single Fourier harmonic no and its various-order derivatives with 
respect to n. Henceforth, the derivatives of the response with respect to n are referred to as “path derivatives.” 
The matrix [r] in equations (17) is therefore given by 

The path derivatives are obtained by successive differentiation of the governing equations (eqs. (16)). The 
recursion relations for the first three global approximation vectors can be written in the following form: 
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Note that the left-side matrix in equations (24) to (26) is the same, and therefore, it needs to be decomposed 
only once in the process of generating all the global approximation vectors. 

Comments on proposed procedure. The following comments are made concerning the foregoing 
procedure for generating the responses associated with different harmonics: 

5.3.4. 

1. 

2. 

3. 

6 .  

The particular choice of the global approximation vectors used herein provides a direct quantitative measure 
of the sensitivity of the different response quantities of the tire to the circumferential wave number (the 
Fourier harmonic) n. 
For problems requiring large numbers of Fourier harmonics (e.g., 100 or more), the range of n is divided 
into intervals of fewer (e.g., 10) harmonics each; the global approximation vectors and reduced equations 
are generated at an intermediate value of n within each interval, and the responses associated with the 
values of n within that interval are generated by the foregoing procedure. Note that higher accuracy of the 
reduced solutions can be obtained by marching backward as well as forward in the n-space with the reduced 
equations. 
The computational effort can be further reduced by using the procedure outlined in reference 16 to uncouple 
the equations associated with the symmetric and antisymmetric shell parameters (with respect to B = 0). 
The procedure is based on transferring the anisotropic (nonorthotropic) terms (submatrices [&I in eqs. (11)) 
to the right sides of equations (15), and adding another level of PCG iterations to account for them. 

Numerical Studies 
To evaluate the effectiveness of the procedure described in the preceding section for generating the response 

associated with different harmonics, a number of problems have been solved by this procedure. For each 
problem, the solution obtained by the foregoing procedure was compared with the direct solution of all the 
equations associated with the different harmonics. Herein, the solutions are presented for a linear problem 
of a two-layered anisotropic tire with elliptic cross section. The material and geometric characteristics of the 
tire are shown in figure 3. The loading consists of uniform inflation pressure and a localized normal loading 
simulating contact pressure. The normal loading in pascals is given by the following equations, which model 
experimental data obtained at NASA Langley: 

10 
6.895 x lo5 - $ - pn COS nfl (-0.2 < < < 0.2) 

P =  I n=l 

6.895 x lo5 (I < I '0.2) 

where 
2Po pn = - sin n/3 n7r 

and p ,  and ,kl are functions of < as shown in figure 4. 
Three-field mixed finite element models were used for the discretization in the meridional direction. Because 

of the symmetry of the shell meridian and loading, only one-half of the meridian is analyzed using 20 
elements. The boundary conditions at the centerline are taken to be the symmetric or antisymmetric conditions. 
Quadratic Lagrangian interpolation functions are used for approximating each of the stress resultants and strain 
components, and cubic Lagrangian interpolation functions are used for approximating each of the generalized 
displacements (a total of 960 stress-resultant parameters, 960 strain parameters, and 603 nonzero displacement 
degrees of freedom). The integrals in the governing equations are evaluated using a three-point Gauss-Legendre 
numerical quadrature formula. Typical results are presented in figures 5 to 10 and in tables 3 and 4. 

The foregoing procedure was applied to this problem, and 10 global approximation vectors were evaluated 
at no = 5 and used to generate the tire response in the range n = 1 to 10. The accuracy of the generalized 
displacements and total strain energy obtained by the foregoing strategy with 5, 8, and 10 global approximation 
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vectors is indicated in figures 5, 6, and 7. Each generalized displacement in figures 5 and 6 is normalized by 
dividing by its maximum absolute value given in tables 3 and 4. The generalized displacements and total strain 
energy predicted by the foregoing procedure with 10 vectors are almost indistinguishable from the direct finite 
element solution. 

expansions, the solutions obtained using 8 and 10 terms of the Taylor series expansion at no = 5 are shown 
in figures 8 and 9. As can be seen, the predictions of the Taylor series are considerably less accurate than the 
predictions of the foregoing strategy, particularly when n is much different from no (the series diverges when 
n > 9). Normalized contour plots for the total generalized displacements produced by the combined inflation 
pressure and localized loading are shown in figure 10. 

I To contrast the accuracy of the predictions of the foregoing procedure with that of the Taylor series 

7. Experimental Verification of Tire 
Contact and Deformation 

One of the most important aspects of tire mod- 
eling is verification of the numerically predicted tire 
deformations and stresses. To aid in the verification 
process, a sizable experimental program is underway 
to measure the responses of various tires subjected 
to different loading conditions. The Space Shuttle 
orbiter nose gear tire has been selected as one of the 
aircraft tires to be analyzed. The measured responses 
of this tire are being included in the experimental 
data base. 

Figure 11 shows the measured pressure distribu- 
tion and friction coefficient distribution for a Space 
Shuttle orbiter nose gear tire inflated to 2.17 MPa 
and subjected to a static load of 67 kN. The load- 
ing conditions shown in the figure are typical oper- 
ating loads for the orbiter nose gear tire. The load- 
deflection curve for the tire inflated to 2.17 MPa is 
shown in figure 12. The data presented in the figure 
provide a global measurement of structural response 
of the orbiter tire to the static loading condition. 

To obtain a detailed map of the tire deforma- 
tions under static loading conditions, close-range 
photogrammetry techniques are being utilized. Fig- 
ure 13 is a photograph of the experimental arrange- 
ment used to obtain these photogrammetry measure- 
ments. A video camera is used to measure accurately 
the spatial coordinates of each of the circular targets 
bonded to the tire sidewall. By using target-location 
data from various loading conditions, a map of tire 
deformations can be constructed. Figure 14 shows 
a three-dimensional representation of sidewall defor- 
mations of the orbiter nose gear tire subjected to an 
inflation pressure of 2.17 MPa and loaded statically 
to 58 kN. 

8. Benchmark Problems 
The National Tire Modeling Program (NTMP), 

which is jointly sponsored by the National Aeronau- 
tics and Space Administration and the U.S. tire in- 
dustry, has defined a family of benchmark tire mod- 

eling problems. The initial set of benchmark prob- 
lems includes four loading conditions of increasing 
complexity. The loading conditions are represented 
schematically in figure 15. The first loading condi- 
tion is axisymmetric and each of the subsequent three 
loading conditions reduces the degree of symmetry. 
Specifically, the four loading conditions are (1) in- 
flation pressure only, (2) combined inflation pressure 
and static vertical loading on a flat surface, (3) com- 
bined inflation pressure, static vertical loading on a 
flat surface, and an externally applied drag load, and 
(4) combined inflation pressure, static vertical load- 
ing on a flat surface, and an externally applied lateral 
force. 

A number of passenger car, truck, and aircraft 
tires will be subjected to the aforementioned load- 
ing conditions. These tires will be representative 
of the different construction techniques currently in 
use, that is, bias-ply, bias-belted, and radial-belted 
designs. The various tire manufacturers participat- 
ing in the NTMP will furnish the test tires for the 
benchmark experimental program. The manufactur- 
ers are also furnishing samples of the rubber, cord, 
and ply stock materials so that detailed studies of 
the material properties of the tire constituents can 
be conducted. 

9. Future Directions of Research 
Although considerable effort has recently been 

devoted to the development of analytical tire de- 
sign tools, major advances are still needed in com- 
putational strategies and numerical algorithms, in- 
cluding contact algorithms, in order that these an- 
alytical tools play an important role in tire design. 
For advancement to be made, a number of pacing 
items must be addressed by the research community. 
Primary pacing items recommended as future direc- 
tions for research include (1) development of com- 
putational models for flexible cord-rubber materials, 
(2) accurate determination of the operational loads 
on tires, and (3) assessment of the reliability of 
numerical response predictions and their adaptive 
improvement. The secondary pacing items include 
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(1) development of automatic model generation fa- 
cilities and (2) integration of tire analysis programs 
into CAD systems. 

9.1. Primary Pacing Items 

9.1.1. Computational models for flexible cord- 
rubber materials. The reliability of numerical predic- 
tions of tire response is critically dependent on accu- 
rate constitutive modeling of the material behavior 
in the entire range of operational loads and tempera- 
tures. Also, numerical techniques are needed for pre- 
dicting the failure initiation and damage propagation 
in tires. This, in turn, may require the availability 
of microstructurally based constitutive descriptions 
and damage theories. 

9.1.2. Accurate determination of the operational 
loads on tires. The service loads on tires that are 
difficult to determine include impact forces, thermal 
loads, and contact forces and, in turn, determina- 
tion of these forces requires accurate determination of 
braking, skidding, and frictional forces. The model- 
ing of frictional forces needs special attention, specifi- 
cally related to the effect of inflation pressure. More- 
over, because of the uncertainties associated with ex- 
ternal forces, as well as the material and geometric 
properties of the tire, there is a need to quantify 
the uncertainty in the response predictions of the 
tire through the use of stochastic models and proba- 
bilistic analysis techniques. A state-of-the-art review 
of probabilistic methods for engineering analysis is 
given in reference 40. 

9.1.3. Assessment of reliability and adaptive im- 
provement of numerical response predictions. In spite 
of the considerable attention devoted by engineers 
and mathematicians to the subject of error estima- 
tion and control, none of the large-scale commercial 
finite element systems has facilities for error estima- 
tion or adaptive improvement. To remedy this situa- 
tion, major advances are needed in the theory, strate- 
gies, and algorithms for implementation of error es- 
timation and control. 

Maturation of the technology of estimation and 
control of discretization errors and incorporation of 
this technology into general-purpose tire analysis and 
design systems will allow the tire designer to select 
only the initial discrete model which is sufficient to 
approximate the geometry of the tire, the error mea- 
sure, and the tolerance. Then the analysis system 
can automatically refine the model until the selected 
error measure falls below the prescribed tolerance. 
The strategy for adaptive improvement can either be 
specified by the user or automatically selected by the 
program (possibly with the aid of an AI-based expert 

system) in such a manner as to minimize the cost of 
the analysis. 

9.2. Secondary Pacing Items 

9.2.1. Development of automatic model generation 
facilities. One of the most important steps for the 
accurate prediction of the response of a tire is the 
proper selection of the mathematical and discrete 
models. Hence, the development of automatic model 
generation facilities as well as knowledge-based and 
expert systems is needed to help the tire analyst 
and designer in the initial selection of the model, 
its adaptive refinement, and the interpretation of 
results. An example of the recent work on automatic 
model generation is given in reference 41. 

9.2.2. Integration of tire analysis programs into 
CAD systems. Much effort is now being directed 
to the integration of analysis programs into CAD 
systems. With the trend of moving from software- 
based processing to hardware-based processing, some 
of the analysis modules for the tire are likely to 
become hardware functions. The interface between, 
and optimal combination of, software and hardware 
functions should be investigated. 

10. Summary and Conclusions 
Currently used techniques for tire contact analysis 

are reviewed. Discussion focuses on the techniques 
used in modeling frictional forces and the treatment 
of contact conditions. A status report is presented 
on a new computational strategy for the modeling 
and analysis of tires including the solution of the 
contact problem. The strategy is based on solution 
of the complex tire contact problem, as a sequence of 
simpler problems, and obtaining information about 
the sensitivity of the tire response to each of the 
complicating factors. 

The key elements of the proposed strategy are 
(1) semianalytic finite elements in which the shell 
variables are represented by Fourier series in the cir- 
cumferential direction and piecewise polynomials in 
the meridional direction, (2) a mixed formulation 
with the fundamental unknowns consisting of strain 
parameters, stress-resultant parameters, and gener- 
alized displacements, (3) a perturbed Lagrangian for- 
mulation for the determination of the contact area 
and pressure, (4) multilevel operator splitting to ef- 
fect successive simplifications of the governing equa- 
tions, and (5) multilevel iterative procedures and re- 
duction techniques to generate the response of the 
tire. 

The governing discrete equations of the tire are 
obtained by applying a modified form of the three- 
field Hu- Washizu mixed variational principle. The 
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modification consists of augmenting the functional of 
that principle by two terms: the Lagrange multiplier 
vector associated with the nodal contact forces and 
a regularization term (which is quadratic in the La- 
grange multiplier vector). Multilevel operator split- 
ting is used to (1) uncouple the equations associ- 
ated with different harmonics, (2) identify the ef- 
fects of different Fourier harmonics, and (3) delineate 
the effect of anisotropic (nonorthotropic) material 
properties. 

The nonlinear governing finite element equa- 
tions of the tire contact problem are solved using 
the Newton-Raphson iterative procedure. For each 
Newton-Raphson iteration, nested iteration loops are 
performed using the preconditioned conjugate gradi- 
ent (PCG) technique. The inner iteration loop ac- 
counts for the coupling between the different har- 
monics, and the outer loop accounts for the contact 
conditions associated with the contact nodes. 

An efficient procedure is presented for the solution 
of the resulting algebraic equations of the inner iter- 
ation loop, associated with different Fourier harmon- 
ics. The procedure is based on approximating the tire 
response associated with a range of Fourier harmon- 
ics by a few global approximation vectors that are 
generated at a particular value of the Fourier har- 
monic within that range. The full equations of the 
finite element model are thus solved for only a single 
Fourier harmonic, and the responses corresponding 
to the Fourier harmonics are generated using a re- 
duced system with considerably fewer degrees of free- 
dom. The effectiveness of this procedure is demon- 
strated by means of a numerical example of the linear 
response of a two-layered anisotropic tire subjected 
to combined inflation pressure and localized loading 
(simulating the contact pressure). 

Experimental  research currently underway to ver- 
ify the numerical predictions of the tire response is 
discussed, and the benchmark problems selected by 
the National Tire Modeling Program are described. 
Also, future directions for research on tire modeling 
and analysis are recommended. 

Results of the present study suggest the following 
conclusions relative to the proposed computational 
procedure for generating the tire response associated 
with different Fourier harmonics: 

1. The use of path derivatives (derivatives of the re- 
sponse with respect to the Fourier harmonic) as 
global approximation vectors leads to accurate so- 
lutions with a small number of vectors. Therefore, 
the time required to solve the reduced equations 
is relatively small and the total time required to 
generate the response for a range of 10 Fourier 

harmonics is little more than that required for a 
single Fourier harmonic. 

2. The global approximation vectors provide a direct 
measure of the sensitivity of the different response 
quantities to the circumferential wave number 
(wave harmonic). The sensitivity of the global 
response can also be assessed with these vectors. 

3. The reduction method used in the proposed com- 
putational procedure exploits the best elements 
of the finite element method and of the Bubnov- 
Galerkin technique, as follows: 
a. The finite element method is used as a general 

approach for generating global approximation 
vectors. The full finite element equations are 
solved only for a single Fourier harmonic. 

b. The Bubnov-Galerkin technique is used as an 
efficient procedure for minimizing and distrib- 
uting the error throughout the structure. 

4. The reduction method extends the range of appli- 
cability of the Taylor series expansion by relaxing 
the requirement of using small changes in the cir- 
cumferential wave number. 

NASA Langley Research Center 
Hampton, Virginia 23665-5225 
December 23, 1987 
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Table 1. Symmetric and Antisymmetric Tire Parameters With Respect to 0 = 0 

I I Symmetric Set I Antisymmetric Set 
I ~~ Strain components 

I Stress resultants 

I- Generalized displacements 

Table 2. Different Types of Coupling in the Analysis of Tires Using 
Semianalytic Finite Elements 

Response 

Linear 

Nonlinear 

Material 

Isotropic or 
orthotropic 

Anisotropic 

Anisotropic 

Governing finite element equations 

Uncoupled in harmonics 

Symmetric and antisymmetric 
variables uncoupled 

Uncoupled in harmonics 

Symmetric and antisymmetric 
variables uncoupled 

Coupled in harmonics 

Symmetric and antisymmetric 
variables coupled 
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Table 3. Maximum Absolute Values of the In-Plane Displacements and Rotation 
Components for Two-Layered Anisotropic Tire 

Displacements 
and rotations 

unET/(pornaxh) 

[Tire shown in fig. 3; porn,, = 3.0 x lo5 Pa] 

Fourier harmonic 

n = l  n = 5  n = 10 
7.801 0.2570 0.06650 

wnET/(pornaxh) 
13.24 

.04869 

n WnET/(Pornax h, 
6 0.6496 

.2229 

.02283 

.09105 

4O.n ET/pornax .2518 I .05846 1 .3421 I 

Table 4. Maximum Absolute Values of the Normal Displacement Components 
wn for Two-Layered Anisotropic Tire 

harmonic, 

[Tire shown in fig. 3; porn,, = 3.0 x lo5 Pa] 

Fourier 
harmonic, 

7.047 

3.667 

2.253 

.2262 

.5758 

.7861 

1.351 I I  10 I .7717 I 
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(-) 

I 
I 
I 

I 
I 

4 I 

AI-based high-level problem'specification 
Tire geometry 
Material properties 

I Loading and temperature 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

e 
Mathematical model 

Two-dimensional theory 
First-order shear deformation 
Higher order shear deformation 

Three-dimensional theory 
I 

1 
Semianalytic finite element models 

Number of Fourier harmonics 
Grids 

Coarse 
Enriched 

Contact algorithm 
Coupling of harmonics 
Anisotropic terms Postprocessing 

b e s i g n  improvement 11 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

J 

Figure 1. Schematic of the tire design process. 
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s, Ps 

External loading 

Q0 

V 

Generalized Stress resultants 
displacements 

I Figure 2. Tire model and sign convention of stress resultants, generalized displacements, and external loading. 

EL = 517 MPa c =  1 . 0 7  

5 = 0.5 

Boundary conditions: 
At c = O  

ET = 8.27 MPa 

GLT = 3.10 MPa 

GTT = 1.86 MPa 

v L T  = 0.4 

h = 1.067cm 

bo = 5.08 cm 

b l  =6.223cm 

b2 = 5.385 cm 

a = 19.558 cm 

Number of layers = 2 

Fiber orientation: [+55°/-550] 

Figure 3. Two-layered anisotropic tire used in the present study. 
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Figure 4. Variation of contact pressure and contact angle in the meridional direction. 
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- Full system 
o 8vectors Proposed 
+ 10 vectors I strategy 
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Figure 5. Accuracy of transverse displacements wn obtained by the proposed procedure. Two-layered 
anisotropic tire shown in figure 3; no = 5. 
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Figure 6. Accuracy of in-plane displacements and rotation components obtained by the proposed procedure. 
Two-layered anisotropic tire shown in figure 3; no = 5. 
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Figure 7. Accuracy of total strain energy of the shell obtained by the proposed procedure. Two-layered 
anisotropic tire shown in figure 3. 
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I Figure 8. Accuracy of normal displacement W n  obtained by Taylor series expansion at no = 5. Two-layered 
anisotropic tire shown in figure 3. 
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Figure 9. Accuracy of in-plane displacements and rotation components obtained by Taylor series expansion at 
no = 5. Two-layered anisotropic tire shown in figure 3. 
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Figure 10. Normalized contour plot,s for the generalized displacements. Two-layered anisotropic tire subjected 
to combined inflation pressure and localized loading (see fig. 3). The range of the contours is -1.0 to +1.0 
at increments of 0.1. 
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1.1 = 0.8 

Pressure distribution Friction distribution 

Figure 11. Measured pressure and friction distribution in contact area of Space Shuttle orbiter nose gear tire 
under static loading conditions. Vertical load, 67 kN; inflation pressure, 2.17 MPa. 
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Figure 12. Load-deflection curve for Space Shuttle orbiter nose gear tire subjected to static vertical loading on 
a flat surface. Inflation pressure, 2.17 MPa. 
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Test platen 
Test tire 

L-85-12753 
Figure 13. Experimental arrangement for close-range photogrammetry measurements of tire sidewall 

deformat ions. 
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Unloaded 
Loaded ------ 

Figure 14. Three-dimensional representation of Space Shuttle orbiter nose gear tire sidewall deformations based 
on close-range photogrammetry data. 
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(a) Inflation pressure. (b) Inflation pressure and 
static vertical loading. 

I 

(c) Inflation pressure, 
static vertical loading, 
and externally applied 
drag load. 

(d) Inflation pressure, 
static vertical loading, 
and externally applied 
lateral load. 

Figure 15. Loading conditions for the initial set of benchmark problems from the National Tire Modeling 
Program. 
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